
Real-Time Scheduler Design For Embedded
System Domain

Anil Kumar Mishra#, Yogomaya Mohapatra*, Ashis Kumar Mishra#

 #Department of Computer Science & Engineering, Orissa Engineering College
 Bhubaneswar, Pin-752050, Odisha, India

#Department of Computer Science & Engineering, College of Engineering & Technology
Bhubaneswar, Pin-751003, Odisha, India

*Department of Computer Science & Engineering, Orissa Engineering College
 Bhubaneswar, Pin-752050, Odisha, India

Abstract: the main objective of this paper is to develop a new
scheduling algorithm for scheduling of task in Real-Time
operating systems. The proposed architecture is a modified
version of Round-Robin architecture which is used for
scheduling of tasks in Real-Time operating systems. It is
observed that the proposed architecture solves the drawbacks
of simple Round-Robin architecture in Real-Time operating
system by decreasing the number of context switches waiting
time and response time thereby improving the system
performance. This paper also explains the development of a
new CLI simulation framework: to study and evaluate the
performance of various uniporcessor real-time scheduling
algorithm for Real-Time system. Task ID, Deadline, Priority,
period, Computation time, and Phase are the input task
attributes to the scheduler simulator and chronograph
imitating the real-time execution of the input task set and
computational statistics of the schedule are the output. The
proposed framework for the scheduler simulator is mainly
developed to be used as a teaching tool. The CLI deployment
of the simulator enables the user a platform, machine and
software-independent utilization of the technical resource.

Key words: RTOS, Round-Robin, EDF, FCFS, CLI, RMS,
Preemption, MUF.

1. INTRODUCTION

The purpose of a task scheduling is to organize the set of
tasks ready for execution by the processor more precisely,
to organize them so that performance objective is met.
Thus it is essential an optimization problem. The order of
arrangement of tasks are called schedule. A schedule can
be a feasible or optimal: A valid schedule is called a
feasible schedule, if all the tasks meet their respective time
constraints in the schedule. A real-time task scheduler is
called optimal, if it can feasibly schedule any task set that
can be feasibly scheduled by other scheduler. Scheduling
real-time tasks is an extremely important activity in real-
time systems as this is the ultimate factor that governs the
final temporal properties of tasks. The problem is of
allocating the tasks to computation resources which may be
the CPU, memory, communication channels or I/O devices.
The model most often used in representing the scheduling
problem reflects an allocation of processes to processors
and objective of scheduling algorithm. This objective
function may vary with application. For real-time systems
it usual takes of the form that task must finish within
stipulated deadline. Formally, we define the set of

processes and processors as follows. A set of processes Vp
= (p1, p2,…., pn), are related to each other through a set of
logical links Ep to form a graph Gp= (Vp,Ep). A set of
processors Gq= (Vq, Eq). Allocating processes to
processors is function F: Vp-> Vq. (1) Task scheduling in
real-time systems can be static or dynamic. A static
approach calculates schedules for tasks off-line and it
requires a complete prior knowledge of task’s
characteristics. A dynamic approach determines schedules
for tasks on the fly and allows the tasks to be dynamically
invoked. (2) Real-Time tasks can be of two types: periodic
and aperiodic. Periodic tasks are those which recur with a
regular time interval e.g. a transducer like thermocouple to
measure temperature of a process at regular intervals.
Aperiodic tasks are associated with asynchronous events
like occurrence of an alarm event due to some parameter of
the controlled physical system going above the threshold.

2. LITERATURE REVIEW

 Conventional Scheduling strategies like First come First
Served (FCFS) or Round Robin cannot be used in real-time
systems because they do not take into account the
importance of task characteristics like deadline. Some
important scheduling strategies used in real-time systems
are discussed below.
Heuristic Scheduling this policy is often called “static
priority scheduling”. It proceeds from the assumptions that
each task has associated a fixed (static) priority. This
defines its importance for scheduling application. Tasks are
connected in order of priority in the ready list, the highest
priority job will be on the top. This is preemptive policy,
thus at a reschedule time the running task will be
preempted if a higher priority task is ready. Task
importance is evaluated heuristically by application
designer.. This policy is simple and easy to use and
generally effective and is used in commercial real-time
operating system like RMK, VRTX, VxWORKS and
Venix.
Rate Monotonic Scheduling (RMS) the policy introduced
by Liu and Leyland [1] considers a single task criterion.
RMS is an event driven scheduling algorithm. This is a
static priority algorithm and is extensively used in practical
applications. The lower occurrence rate of a task, the lower
priority is assigned to it. A task having highest occurrence
rate (lowest period) is accorded highest priority. RMS has

Anil Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 134 - 138

www.ijcsit.com 134

been proved to be optimal static priority scheduling
algorithm.
 Necessary conditions: A set of periodic real-time task
would not be RMS schedulable unless they satisfy the
following necessary condition

 i/pi= I≤1 (1)
Where ei is the worst case execution time and pi is the
period of task Ti , n is the number of tasks to be scheduled
and ui is the CPU utilization due to the task Ti , This test is
simply expresses the fact that the total CPU utilization due
to the task Ti . This test simply expresses the fact that total
CPU utilization due to all tasks in the task set should be
less than 1.
 Sufficient conditions: The derivation of the sufficiency
conditions for RMS is an important result and was obtained
by Liu and Layland in 1973. A set of n real-time periodic
tasks are schedulable under RMS, if

 i≤n(-1) (2)

 Where ui is the utilization due to the task Ti.. . As n->∞,
the utilization bound->0.693. This has said led to the
simple rule of thumb that says that “if the CPU utilization
is less than 69%, then all deadlines are met”[1].
Earliest Dead line First (EDF) Scheduling
In this scheduling strategy, priority is defined using a
single criterion, time to deadline (task deadline).A task will
be assigned the highest scheduling priority if its current
deadline is the earliest(nearest) and placed in the front of
the ready queue. It should be clear that deadline values
change during the program execution. T his algorithm
belongs to a class of dynamic policies. This scheme is also
known as earliest deadline as soon as possible scheduling
policy. There is another scheduling scheme known as Least
Laxity First (LLF). When invoked an EDF Scheduler
simply scans through all the tasks in the system and
dispatches the one with the earliest deadline. The
difference between the remaining execution time of a task
and its remaining time is the laxity. The LLF scheduler
dispatches the task and its remaining time to deadline is its
laxity. The LLF scheduler dispatches the task with the
smallest laxity.
CPU load (also known as processor utilization factor) is
defined as:

 U= i/Ti (3)

Rate Monotonic Scheduling- a hard real-time scheduling
algorithm- can guarantee time restraints only up to 70%
CPU load. Beyond that it does not support dynamic
systems very well.In addition to schedulable bounds that
are are less than 1.0, two problems exist for RMS
algorithms provide no support for dynamically changing
task periods or priorities and task may experience task
inversion. The first problem can be resolved by considering
the fixed priority scheduling of periodic task with varying
task execution priorities. Specifically task may have
subtasks of various priorities. Specifically tasks may have
subtasks of various priorities. Priority inversion arises

when a high priority task must wait for a lower priority task
to execute, typically due to other resources being used by
executing tasks. i.e. tasks waiting on critical
selection.[3]This implies applications have to state their
run-time requirements beforehand – how often they must
be called in a second, which maximum response time is
acceptable etc. All this information must be provided by
the application programmer. On the other hand, with the
earliest deadline first (EDF) and minimum-laxity-first
(MLF) dynamic scheduling algorithm, a transient overload
in the system may cause a critical task to fail, which is
certainly undesirable .The maximum-urgency-first (MUF)
combines the advantages of RM, EDF and MLF[3].Like
EDF and MLF, MUF has a schedulable bound of 100% for
the critical state. And like RMS, a critical set can be
defined that is guaranteed to meet all its deadlines. The
MUF algorithm also allows the scheduler to detect forms of
deadline failure handler routines for tasks, which fail to
need their deadlines. In this perspective the present work
was undertaken-to design an efficient algorithm for
scheduling soft real-time tasks in a real-time embedded
system. And run the algorithm on a simulated embedded
environment.

3. PROBLEM DEFINITION
The main aim is to study the policy mechanisms of
different real time schedulers in embedded domain,
evaluation of performance mechanism to arrive at a
common solution. The main problem is the improvements
in RR (ROUND ROBIN) algorithm. And how it will be
suitable for real time embedded system domain. A
scheduler requires a time management function to
implement the round robin architecture and requires the
tick timer. The time slice is proportional to period of clock
ticks. The time slice length is an critical issue in soft real
time embedded application as missing of deadlines will
have negligible effects in the system performance. The time
slice must not be too small which results in frequent
context switches and should be slightly greater than
average process computation time.

4. METHODOLOGY
Since an embedded real-time system is not available to test
the working of the scheduler. The embedded real-time
environment is simulated using RED-HAT LINUX
platform by using c and REDHAT LINUX. For this we
have to depend three major functionalities of the LINUX
kernel
(1)System Timer (2) Job response time. (3)Kernel
preemption.
(1)System Timer: In time-sharing systems, an operating
system uses a periodic timer to divide the CPU time
among all the jobs. By selecting a proper timer frequency
to define the time slice, OS may achieve a good balance
between the job responsiveness and context switching over
head. Depending on the system architecture, the period of
the timer will be decided.
(2)Job response Time: In addition to a timer resolution, a
real-time kernel also needs to provide a short job response
time. In our discussion, the job response time is defined to

Anil Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 134 - 138

www.ijcsit.com 135

the interval between an occurrence (e.g. device signal,
periodic job arrival etc.) and the start time of a job
execution in response to the event (e.g. interrupt service,
periodic job response etc.). It has been referred to as the
task dispatch latency. In general, the job response time
includes the following components.
Interrupt dispatch time (IDT): When an interrupt occurs, a
system must save all registers and other system execution
status before calling the interrupt service routine to handle
it.
Interrupt service time (IST): The time used by the interrupt
service routine to retrieve information from the hardware
device or to gather information from the system.
Kernel preemption time: The time to preempt the current
user job. If the job is running on user mode, KPT is zero
since the preemption may happen immediately. If the user
is running on the kernel mode, KPT is the time before it
exits the kernel mode.
Scheduling delay time (SDT): The time used by the
scheduler to select the next user job in response to
interrupt.
Context switching time (CST): The time used to save
registers and status of current job, and also reset registers
and the status of next job.
(3)Kernel preemption: To reduce the job response time, we
must also improve the kernel preemption to reduce the
KPT. Otherwise a low priority job can block another higher
priority job/task for a long time staying in the kernel mode.
Two different approaches are possible to preempt a job
running on kernel mode. The first is the full preemption
model and the other is the cooperative preemption model.
We will discuss it later in the implementation part.

4.1 Proposed Algorithm to calculate the time slice
 1. Algorithm Time Slice (P, T)
2.// N=P.length represents the no. of processes
3.// P[1..N] is the array containing the priority of N no. of
processes.
4.// T[1..N] is the array containing the CPU burst time of N
no. of processes
5.// TS [1..N] is the array that will contain the time slice for
individual processes.
6. Range= (max (T) +min (T))/2
7.// max (T) returns the maximum CPU burst time
8.//min[T] returns the minimum CPU burst time
9. for i=1 to P.length
10. TS[i] = (Range*P.length)/ (P[i]*T.length)
11. return TS

4.2 Proposed Architecture
Input Components: The input components are the
processes and the priority. The inputs components will be
allocated to the mini-processor.
Mini-Processor: The Mini-processor is a Kernel level
Programming (logical Processor). It keeps track the
Process-ID, Priority of each Process. It will calculate the
range, time slice of each process.
Shared Memory: Shared Memory is method of
Interprocess Communication (IPC) where two or more
processes share a single chunk of memory to communicate.

The shared memory can also be used to set permission on
memory. In this proposed model the shared memory stores
all the calculated data computed by the Mini-Processor.
Main Processor: The main Processor will run all the
processes that are being taken as the input. And the
scheduling will take place according to the Round-Robin
Algorithm.
Time Slice Calculation for Proposed Architecture:
Time slice = (R×N) / (Pr.×P)
Range = maximum CPU Burst + minimum CPU Burst / 2
Where Pr = Priority of Process
R= Range
T.Pr = Total no. of Processes in the system
T.Pr = Total no. of Priority in the system

 Figure 4.2.1 Proposed Architecture

Development of a simulator using Linux:
This section describes the development of a proposed
simulator in Linux environment. A framework for
evaluation of scheduling algorithm must satisfy
characteristics such as simplicity, compatibility with pc
platform usage of the standard operating system functions,
accuracy of results, ease of use etc. Majority of these
requests are aimed for use in the visual user interface.
Scheduling algorithm evaluation and analysis tool performs
the task definition, task sets generation, execution of
selected algorithms, execution analysis of the execution
and the results are displayed.

5. IMPLEMENTATION
The module-1 is designed to calculate the range and the
CPU burst time of each processor. We have named it as
Mini-processor. The module-2 consists of all the
applications that are designed to run in the module-1. The
shared memory is constructed to capture all the results
produced by module-1. The module-3 is the program based
on the logic of modified Round-Robin algorithm.

5.1 Experiments and Results
Assumptions: The environment where all the experiments
performed is a single processor environment and all the
processes are independent. The processes (applications) are
designed and the time slice is calculated along with the
burst time of the process according to the proposed
algorithm. All the parameters like no of processes and
priority are known. The burst time and time slice will be
calculated. All the processes are CPU bound.

Process
Priority

Mini
Processor

Shared
Memory

Process_Id
Range

Time Slice

Main
Processor

Anil Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 134 - 138

www.ijcsit.com 136

Experimental Framework: Our experiment consists of
several input output parameters. The input consists of the
Processes or Applications which is designed. The output
parameter consists of time slice or time quantum.
Experiments Performed: To evaluate performance of our
proposed algorithm. Four applications have been written
and the Mini-Processor will calculate the burst time, time
slice of each application. The results are captured and
shown.
The results are captured and given below:

 (1)Time Slice Calculation of Mini-Processor

In this above results “Experimental Result1” represents the
role of a Mini-Processor along with the modified RR is
shown. It shows how the Mini-Processor calculates the
CPU burst for each application along with its Time slice or
Time quantum.

 (2)Simulation for RR Algorithm

The “Experiment Result2” represents the sequence in
which the RR Scheduling will take place.

5.2 Comparison
Comparison with the earlier work has performed.
Yaashuwant.C and Dr.R.Ramesh designed an architecture
and algorithm for scheduling tasks in Real-Time operating
systems. They have provided a web enabled framework.
There exist three major differences from the earlier work.
The First difference is the processor; in this algorithm the
logical mini-Processor is proposed. But in the paper [3] a
physical processor was proposed. The second difference is
the shared memory where the results are stored each time
the programs runs it removes the old data from the shared
memory and inserts the new data. In the earlier work the
shared memory concept was not invoked. And the third
major difference is, the simulator that was designed we
have to enter the input manually the output will come
according to the formula the user will select. So, the
implementation is not specific for Round-Robin
scheduling. But the thing that is proposed by us is also
implemented the same thing. Previously in the earlier work
it was implemented in a web platform. But here it is
implemented in Linux Platform with the accuracy. In the
earlier work the Real-Time scheduler Co-Processor
hardware gives closer view of scheduling.

6. CONCLUSION
The proposed Linux framework gives the developer the
possibility to evaluate the schedulability of real-time
application. The GUI of the framework will allow for easy
comparisons of the framework of existing scheduling
policies and also simulate the behavior and verify the
suitability of custom defined schedulers for real-time
applications. The scheduler co-processor hardware can help
the learner have a closer view of the scheduling tasks in
real-time hardware. From the above, comparisons and the
test results our newly proposed architecture along with
performs better. Then we arrive at a common solution to
simulate parametric scheduling policy for real-time
embedded system domain. It is also concluded that the
proposed architecture is superior as it has less waiting and
response time, usually less preemption and context
switching therefore reducing the overhead and saving of
memory space. Future work can be done on this
architecture modification and algorithm for hard real-time
systems where hard deadline system requires partial output
to prevent the catastrophic effect.

REFERENCES
[1] M.V. Panduranga Rao, K.C. Shet, R.Balkrshna, K.Roopa (2008)

“Development of Scheduler for Real Time Embedded System
Domain”, 22nd International conference on Advance Information
Networking and Application Workshops.

[2]Arnoldo Diaz, Ruben Batista and Oskardie Castro (ICEEE 2007)
“Realtss: a real-time scheduling simulator”, 2007 4th International
Conference on Electrical and Electronics Engineering.

[3] Jwen Dong, Yang Zhang(ICMI 2009) “A modified Rate-Monotonic
Algorithm for scheduling of tasks with Different Importance in
Embedded System”, The Ninth International Conference on
Electronic Measurement and Instruments.

[4] C.Yaashuwant, Dr.R.Ramesh (IJCSIS 2009) “A New Scheduling
Algorithms, International Journal of Computer Science and
Information Security vol. 6, No.2, 2009.

[5] Insop Song, Sehjeong Kim, Fakhreddine Karray “A Real-Time
Scheduler Design for a class of Embedded Systems”,

Anil Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 134 - 138

www.ijcsit.com 137

IEEE/ASMETRANCTIONS ON MECHATRONICS, VPL.13,
NO.1, FEBRUARY 2008.

[6] M.V. Panduranga Rao, K.C. Shet “A Research in Real Time
Scheduling Policy for Embedded System Domain”, CLEI
ELECTRONIC JOURNAL, VOL12, NUMBER 2, PAPER 4,
AUGUST 2009.

[7] I.L Hellerstein, Y.Diao, S.Parekh, and D.M Tilbury, “Feedback control
of computing system”, New York: IEEE press/Wiley/Interscience,
2004.

[8] L.Sha, T.Abdelzaher, K.Erek Arzen, A.Cervin, T.Baker, A. Burns,
G.Buttazzo, M. Caccamo, J.Lehoczky, and A.K Mok, “Real time
scheduling theory”, A historical perspective “, Real-time Syst. Vol-
28, pp-101-155,2004.

[9]X.Liu, and S.Goddard, “Supporting dynamic QOS in Linux”, in proc.
10th IEEE Real-Time Embedded Technology Appl. Symp.(RTAS
2004), Toronto, Canada, 2008, pp. 246-254.

[10]A.Goel, J.Walpole, and M.Shor, “Real-rate Scheduling”, in proc. 10th
IEEE Real-Time Embedded Technology Application Symp. (RTAS
2004), Toronto, Canada, pp, 434-441.

[11] C.Yaashuwant, Dr.R. Ramesh (IJCSIS2010) “Design of Real-Time
Scheduling Simulator and Development of Modified Round Robin
Architecture”, International Journal of Computer Science and
Information Security vol. 10, No.3, 2010.

Anil Kumar Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 134 - 138

www.ijcsit.com 138

